Asymptotic Estimates of Fundamental Solutions of Third order Nonlinear Difference Equation
نویسندگان
چکیده
منابع مشابه
BEHAVIOR OF SOLUTIONS TO A FUZZY NONLINEAR DIFFERENCE EQUATION
In this paper, we study the existence, asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equation$$ x_{n+1}=frac{Ax_n+x_{n-1}}{B+x_{n-1}}, n=0,1,cdots,$$ where $(x_n)$ is a sequence of positive fuzzy number, $A, B$ are positive fuzzy numbers and the initial conditions $x_{-1}, x_0$ are positive fuzzy numbers.
متن کاملAsymptotic Behavior of Solutions of a Third-order Nonlinear Dynamic Equation on Time Scales
In this paper, we will establish some sufficient conditions which guarantee that every solution of the third order nonlinear dynamic equation (c(t)(a(t)x(t))) + q(t)f(x(t)) = 0, t ≥ t0, oscillates or converges to zero.
متن کاملBoundedness of Solutions of a Third-order Nonlinear Differential Equation
Sufficient conditions are established for the boundedness of all solutions of (1.1), and we also present some sufficient conditions, which ensure that the limits of first and second order derivatives of the solutions of (1.1) tend to zero as t→∞. Our results improve and include those results obtained by previous authors ([3], [5]).
متن کاملUncountably many bounded positive solutions for a second order nonlinear neutral delay partial difference equation
In this paper we consider the second order nonlinear neutral delay partial difference equation $Delta_nDelta_mbig(x_{m,n}+a_{m,n}x_{m-k,n-l}big)+ fbig(m,n,x_{m-tau,n-sigma}big)=b_{m,n}, mgeq m_{0},, ngeq n_{0}.$Under suitable conditions, by making use of the Banach fixed point theorem, we show the existence of uncountably many bounded positive solutions for the above partial difference equation...
متن کاملasymptotic property of order statistics and sample quntile
چکیده: فرض کنید که تابعی از اپسیلون یک مجموع نامتناهی از احتمالات موزون مربوط به مجموع های جزئی براساس یک دنباله از متغیرهای تصادفی مستقل و همتوزیع باشد، و همچنین فرض کنید توابعی مانند g و h وجود دارند که هرگاه امید ریاضی توان دوم x متناهی و امیدریاضی x صفر باشد، در این صورت می توان حد حاصلضرب این توابع را بصورت تابعی از امید ریاضی توان دوم x نوشت. حالت عکس نیز برقرار است. همچنین ما با استفاده...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Science and Engineering
سال: 2017
ISSN: 2349-5359,2454-9967
DOI: 10.29294/ijase.4.2.2017.575-577